Rezgőkör, Thomson képlet (C,L)

C,Y,Z←f,L
f = ←C,L
L = ←C,f ←C,L
C =
\(C=\dfrac{1}{\left(2\cdot\pi\cdot f\right)^2\cdot L}\)
YL =
\(Y_L=-\dfrac{1}{2\cdot\pi\cdot f\cdot L}\cdot\mathrm{i}=-\sqrt{\dfrac{C}{L}}\cdot\mathrm{i}\)
ZL =

\(Z_L=2\cdot\pi\cdot f\cdot L\cdot\mathrm{i}=\sqrt{\dfrac{L}{C}}\cdot\mathrm{i}\)
L,Y,Z←C,f
C = ←f,L ←f,X|Z
f = ←C,L
L =
\(L=\dfrac{1}{\left(2\cdot\pi\cdot f\right)^2\cdot C}\)
YC =
\(Y_C=2\cdot\pi\cdot f\cdot C\cdot\mathrm{i}\)
ZC =

\(Z_C=-\dfrac{1}{2\cdot\pi\cdot f\cdot C}\cdot\mathrm{i}\)
f,Y,Z←C,L
C = ←f,L ←f,X|Z
L = ←C,f ←f,X|Z
f0 =
\(f=\dfrac{1}{2\cdot\pi\cdot\sqrt{C\cdot L}}\)
|Y| =
\(|Y|=\left|2\cdot\pi\cdot f\cdot C\right|=\left|\dfrac{1}{2\cdot\pi\cdot f\cdot L}\right|\)
|Z| =

\(|Z|=\left|\dfrac{1}{2\cdot\pi\cdot f\cdot C}\right|=\left|2\cdot\pi\cdot f\cdot L\right|\)
C,L←f,X|Z
f = ← C,L
|Z| =

← C,f ← C,L ← f,L
C =
\(C=-\dfrac{1}{2\cdot\pi\cdot f\cdot Z}\cdot\mathrm{i}\)
L =
\(L=-\dfrac{Z}{2\cdot\pi\cdot f}\cdot\mathrm{i}\)




B,D,f,Q,R←C,L,R
C =
L =
Rp =
Rs =
D =
Q =
\(Q=\dfrac{1}{D}\)
f0 =
\(f=\dfrac{1}{2\cdot\pi\cdot f\cdot\sqrt{C\cdot L}}\cdot\sqrt{1-\dfrac{1}{4\cdot Q^2}}\)
B =
\(B=D\cdot f\)
Rp =
\(R_s=0\ \Omega\)
\(R_p=\dfrac{1}{D}\cdot\sqrt{\dfrac{L}{C}}\)
Rs =
\(R_p=\infty\ \Omega\)
\(R_s=D\cdot\sqrt{\dfrac{L}{C}}\)
Z0 =
\(Z_0=\sqrt{\dfrac{L}{C}}\)

⌂ Index

Verzió: 2024-10-01 ( 2010-06-13 .. 2024-05-12 14:51:24 UTC )