Kapacitások ( C )

Cs,Cp←C0..C4

C0 =
C1 = ←C0,Cp
C2 =
C3 =
C4 =
Co = Cp =

\(C_o=C_0+\ \dots\ +C_{n-1}\)
Crp = Cs =

\(C_{rp}=\dfrac{1}{\dfrac{1}{C_0}+\ \dots\ +\dfrac{1}{C_{n-1}}}\)
Ch =
\(C_h=\dfrac{n}{\dfrac{1}{C_0}+\ \dots\ +\dfrac{1}{C_{n-1}}}\)
Cm =
\(C_m=\sqrt[n]{C_0\cdot\ \dots\ \cdot C_{n-1}}\)
Csz =
\(C_{sz}=\dfrac{C_0+\ \dots\ +C_{n-1}}{n}\)
Cn =
\(C_n=\sqrt{\dfrac{{C_0}^2+\ \dots\ +{C_{n-1}}^2}{n}}\)
C1←C0,Cs
C0 =
Cs = ← C0..Cn-1
C1 =
\(C_1=\dfrac{1}{\dfrac{1}{C_s}-\dfrac{1}{C_0}}\)
C1←C0,Cp
C0 =
Cp = ← C0..Cn-1
C1 =
\(C_1=C_p-C_0\)




D,Q,Rp←C,f,Rs
C =
f =
Rs =
D=tan(δ) =
\(D=\tan(\delta)=2\cdot\pi\cdot f\cdot C\cdot R_s\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{1}{2\cdot\pi\cdot f\cdot C\cdot R_s}\)
Rp =
\(R_p=\dfrac{1}{\left(2\cdot\pi\cdot f\cdot C\right)^2\cdot R_s}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
D,Q,Rs←C,f,Rp
C =
f =
Rp =
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{1}{2\cdot\pi\cdot f\cdot C\cdot R_p}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=2\cdot\pi\cdot f\cdot C\cdot R_p\)
Rs =
\(R_s=\dfrac{1}{\left(2\cdot\pi\cdot f\cdot C\right)^2\cdot R_p}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)




C←f,X,Z
f = ← C,XC|Z
XC = ← C,f
Z = *i ← C,f
C =
f←C,X,Z
C = ←f,XC|Z
XC = ←C,f
Z = *i ←C,f
f =
Y,Z←C,f
C = ←f,XC|Z
f = ←C,XC|Z
Y =
\(Y=2\cdot\pi\cdot f\cdot C\cdot\mathrm{i}\)
XC =
\(X_C=\dfrac{1}{2\cdot\pi\cdot f\cdot C}\)
Z =
\(Z=-\dfrac{1}{2\cdot\pi\cdot f\cdot C}\cdot\mathrm{i}\)




C,←f,I,U
f = ←C,I,U
I = ←C,f,U
U = ←C,f,I
C =
\(C=\dfrac{I}{2\cdot\pi\cdot f\cdot U}\)
f←C,I,U
C = ←f,I,U
I = ←C,f,U
U = ←C,f,I
f =
\(f=\dfrac{I}{2\cdot\pi\cdot C\cdot U}\)
I←C,f,U
C = ←f,I,U
f = ←C,I,U
U = ←C,f,I
I =
\(I=2\cdot\pi\cdot f\cdot C\cdot U\)
U←C,f,I
C = ←f,I,U
f = ←C,I,U
I = ←C,f,U
U =
\(U=\dfrac{I}{2\cdot\pi\cdot f\cdot C}\)




C,E←(Q|I,t),U
Q = ←E,U ←C,U ←C,E
I =
t =
U = ←E,Q ←C,Q ←C,E
C =
E =
C,Q←E,U
E = ←Q,U ←C,U ←C,Q
U = ←E,Q ←C,E ←C,Q
C =
\(C=\dfrac{2\cdot E}{U^2}\)
Q =
\(Q=\dfrac{2\cdot E}{U}\)
C, U←E, (Q|I,t)
E = ←Q,U ←C,U ←C,Q
Q = ←E,U ←C,E ←C,U
I =
t =
C =
U =
E, Q←C, U
C = ←Q,U ←E,U ←E,Q
U = ←E,Q ←C,Q ←C,E
E =
\(E=\dfrac{C\cdot U^2}{2}\)
Q =
\(Q=C\cdot U\)
E,U←C,(Q|I,t)
C = ←Q,U ←E,U ←E,Q
Q = ←E,U ←C,U ←C,E
I =
t =
E =
U =
Q,U←C,E
C = ←Q,U ←E,U ←E,Q
E = ←Q,U ←C,U ←C,Q
Q =
\(Q=\sqrt{2\cdot C\cdot E}\)
U =
\(U=\sqrt{\dfrac{E}{2\cdot C}}\)




C←R,t,Ub,UC
R = ←C,t,U,U
t = ←C,R,U,U
Ub =
UC = ←C,R.t,U
C↑ =
\(C_\uparrow=-\dfrac{t}{R\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
C↓ =
\(C_\downarrow=-\dfrac{t}{R\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
R←C,t,Ub,UC
C = ←R,t,U,U
t = ←C,R,U,U
Ub =
UC = ←C,R,t,U
R↑ =
\(R_\uparrow=-\dfrac{t}{C\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
R↓ =
\(R_\downarrow=-\dfrac{t}{C\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
t←C,R,Ub,UC
C = ←R,t,U,U
R = ←C,t,U,U
Ub =
UC = ←C,R,t,U
t↑ =
\(t_\uparrow=-C\cdot R\cdot \ln\left(1-\dfrac{U_C}{U_b}\right)\)
t↓ =
\(t_\downarrow=-C\cdot R\cdot\ln\left(\dfrac{U_C}{U_b}\right)\)
UC←C,R,t,Ub
C = ←R,t,U,U
R = ←C,t,U,U
t = ←C,R,U,U
Ub =
U↑ =
\(U_{C\uparrow}=U_b\cdot\left(1-e^{-\dfrac{t}{R\cdot C}}\right)\)
U↓ =
\(U_{C\downarrow}=U_b\cdot e^{-\dfrac{t}{R\cdot C}}\)
|I| =
\(|I|=\dfrac{U_b\cdot e^{-\dfrac{t}{R\cdot C}}}{R}\)

⌂ Index

Verzió: 2024-10-01 ( 2010-06-24 .. 2024-05-18 12:05:56 UTC )