▲ A program működéséhez szükséges, hogy a böngésződ futtasson JavaScript-et. Böngésződ most
nem
futtat JavaScript-et.
Veszteségi és jósági tényező
D,Q,R
p
←C,f,R
s
C =
f =
R
s
=
☺
☺
D=tan(δ) =
\(D=\tan(\delta)=2\cdot\pi\cdot f\cdot C\cdot R_s\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{1}{2\cdot\pi\cdot f\cdot C\cdot R_s}\)
R
p
=
\(R_p=\dfrac{1}{\left(2\cdot\pi\cdot f\cdot C\right)^2\cdot R_s}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
D,Q,R
s
←C,f,R
p
C =
f =
R
p
=
☺
☺
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{1}{2\cdot\pi\cdot f\cdot C\cdot R_p}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=2\cdot\pi\cdot f\cdot C\cdot R_p\)
R
s
=
\(R_s=\dfrac{1}{\left(2\cdot\pi\cdot f\cdot C\right)^2\cdot R_p}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
D,Q,R
p
←f,L,R
s
L =
f =
R
s
=
☺
☺
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{R_s}{2\cdot\pi\cdot f\cdot L}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{2\cdot\pi\cdot f\cdot L}{R_s}\)
R
p
=
\(R_p=\dfrac{\left(2\cdot\pi\cdot f\cdot L\right)^2}{R_s}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
D,Q,R
s
←f,L,R
s
L =
f =
R
p
=
☺
☺
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{2\cdot\pi\cdot f\cdot L}{R_p}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{R_p}{2\cdot\pi\cdot f\cdot L}\)
R
s
=
\(R_s=\dfrac{\left(2\cdot\pi\cdot f\cdot L\right)^2}{R_p}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
B,D,f,Q,R←C,L,R
C =
L =
R
p
=
R
s
=
☺
D =
Q =
\(Q=\dfrac{1}{D}\)
f
0
=
\(f=\dfrac{1}{2\cdot\pi\cdot f\cdot\sqrt{C\cdot L}}\cdot\sqrt{1-\dfrac{1}{4\cdot Q^2}}\)
B =
\(B=D\cdot f\)
R
p
=
\(R_s=0\ \Omega\)
\(R_p=\dfrac{1}{D}\cdot\sqrt{\dfrac{L}{C}}\)
R
s
=
\(R_p=\infty\ \Omega\)
\(R_s=D\cdot\sqrt{\dfrac{L}{C}}\)
Z
0
=
\(Z_0=\sqrt{\dfrac{L}{C}}\)
B←D,f,Q
f =
←B,D,Q
D =
←B,f
Q =
←B,f
☺
B =
f←B,D,Q
B =
Hz
←D,f,Q
D =
←B,f
Q =
←B,f
☺
f =
D,Q←B,f
B =
Hz
←D,f,Q
f =
←B,D,Q
☺
D =
\(D=\dfrac{B}{f}\)
Q =
\(Q=\dfrac{f}{B}\)
⌂ Index
☺
Verzió: 2024-10-01 (
2010-08-09
..
2024-05-09 13:20:23
UTC )