▲ A program működéséhez szükséges, hogy a böngésződ futtasson JavaScript-et. Böngésződ most
nem
futtat JavaScript-et.
Csillapítók ( R )
R
b
=
R
k
=
A
P
=
☺
\(a=\dfrac{1}{\sqrt{A}}\)
R
0
=
\(R_0=\dfrac{\left(a^2-1\right)\cdot R_b\cdot\sqrt{R_k}}{\left(a^2+1\right)\cdot\sqrt{R_k}-2\cdot a\cdot\sqrt{R_b}}\)
R
1
=
\(R_1=\dfrac{\left(a^2-1\right)\cdot \sqrt{R_b\cdot R_k}}{2\cdot a}\)
R
2
=
\(R_2=\dfrac{\left(a^2-1\right)\cdot R_k\cdot\sqrt{R_b}}{\left(a^2+1\right)\cdot\sqrt{R_b}-2\cdot a\cdot\sqrt{R_k}}\)
R
3
=
\(R_3=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R
4
=
\(R_4=\dfrac{2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R
5
=
\(R_5=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R
6
=
\(R_6=R_{bk}\)
R
7
=
\(R_7=\dfrac{R_{bk}}{a-1}\)
R
8
=
\(R_8=R_{bk}\)
R
9
=
\(R_9=\left(a-1\right)\cdot R_{bk}\)
R
10
=
\(R_{10}=\dfrac{\left(a^2-1\right)\cdot R_b\cdot\sqrt{R_k}}{\left(a^2+1\right)\cdot\sqrt{R_k}-2\cdot a\cdot\sqrt{R_b}}\)
R
11
=
\(R_{11}=\dfrac{\left(a^2-1\right)\cdot\sqrt{R_b\cdot R_k}}{4\cdot a}\)
R
12
=
\(R_{12}=\dfrac{\left(a^2-1\right)\cdot\sqrt{R_b\cdot R_k}}{4\cdot a}\)
R
13
=
\(R_{13}=\dfrac{\left(a^2-1\right)\cdot R_k\cdot\sqrt{R_b}}{\left(a^2+1\right)\cdot\sqrt{R_b}-2\cdot a\cdot\sqrt{R_k}}\)
R
14
=
\(R_{14}=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R
15
=
\(R_{15}=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R
16
=
\(R_{16}=\dfrac{2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R
17
=
\(R_{17}=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R
18
=
\(R_{18}=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
⌂ Index
☺
Verzió: 2024-10-01 (
2010-07-02
..
2024-05-13 14:52:49
UTC )