Csillapítók ( R )

Rb =
Rk =
AP =
\(a=\dfrac{1}{\sqrt{A}}\)
R0 =
\(R_0=\dfrac{\left(a^2-1\right)\cdot R_b\cdot\sqrt{R_k}}{\left(a^2+1\right)\cdot\sqrt{R_k}-2\cdot a\cdot\sqrt{R_b}}\)
R1 =
\(R_1=\dfrac{\left(a^2-1\right)\cdot \sqrt{R_b\cdot R_k}}{2\cdot a}\)
R2 =
\(R_2=\dfrac{\left(a^2-1\right)\cdot R_k\cdot\sqrt{R_b}}{\left(a^2+1\right)\cdot\sqrt{R_b}-2\cdot a\cdot\sqrt{R_k}}\)
R3 =
\(R_3=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R4 =
\(R_4=\dfrac{2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R5 =
\(R_5=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R6 =
\(R_6=R_{bk}\)
R7 =
\(R_7=\dfrac{R_{bk}}{a-1}\)
R8 =
\(R_8=R_{bk}\)
R9 =
\(R_9=\left(a-1\right)\cdot R_{bk}\)
R10 =
\(R_{10}=\dfrac{\left(a^2-1\right)\cdot R_b\cdot\sqrt{R_k}}{\left(a^2+1\right)\cdot\sqrt{R_k}-2\cdot a\cdot\sqrt{R_b}}\)
R11 =
\(R_{11}=\dfrac{\left(a^2-1\right)\cdot\sqrt{R_b\cdot R_k}}{4\cdot a}\)
R12 =
\(R_{12}=\dfrac{\left(a^2-1\right)\cdot\sqrt{R_b\cdot R_k}}{4\cdot a}\)
R13 =
\(R_{13}=\dfrac{\left(a^2-1\right)\cdot R_k\cdot\sqrt{R_b}}{\left(a^2+1\right)\cdot\sqrt{R_b}-2\cdot a\cdot\sqrt{R_k}}\)
R14 =
\(R_{14}=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R15 =
\(R_{15}=\dfrac{\left(a^2+1\right)\cdot R_b-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R16 =
\(R_{16}=\dfrac{2\cdot a\cdot\sqrt{R_b\cdot R_k}}{a^2-1}\)
R17 =
\(R_{17}=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)
R18 =
\(R_{18}=\dfrac{\left(a^2+1\right)\cdot R_k-2\cdot a\cdot\sqrt{R_b\cdot R_k}}{2\cdot\left(a^2-1\right)}\)

⌂ Index

Verzió: 2024-12-10 ( 2010-07-02 .. 2024-05-13 14:52:49 UTC )