Y←Z
Z =
←Y
☺
☺
☺
Y =
\(Y=\dfrac{1}{Z}\)
cos(φ) =
\(\cos(\varphi)=\dfrac{R}{|Z|}\)
Z←Y
Y =
←Z
☺
☺
☺
Z =
\(Z=\dfrac{1}{Y}\)
cos(φ) =
\(\cos(\varphi)=\dfrac{R}{|Z|}\)
Y,Z←Z
0
..Z
4
Z₀ =
Z₁ =
Z₂ =
Z₃ =
Z₄ =
☺
☺
☺
Z
o
= Z
s
=
\(Z_o=Z_0+\ \dots\ +Z_{n-1}\)
Z
rp
= Z
p
=
\(Z_{rp}=\dfrac{1}{\dfrac{1}{Z_0}+\ \dots\ +\dfrac{1}{Z_{n-1}}}\)
Z
h
=
\(Z_h=\dfrac{n}{\dfrac{1}{Z_0}+\ \dots\ +\dfrac{1}{Z_{n-1}}}\)
Z
m
=
\(Z_m=\sqrt[n]{Z_0\cdot\ \dots\ \cdot Z_{n-1}}\)
Z
sz
=
\(Z_{sz}=\dfrac{Z_0+\ \dots\ +Z_{n-1}}{n}\)
Z
n
=
\(Z_n=\sqrt{\dfrac{{Z_0}^2+\ \dots\ +{Z_{n-1}}^2}{n}}\)
Y
s
=
\(Y_s=\dfrac{1}{Z_s}\)
Y
p
=
\(Y_p=\dfrac{1}{Z_p}\)
Y,Z←Y
0
..Y
4
Y₀ =
Y₁ =
Y₂ =
Y₃ =
Y₄ =
☺
☺
☺
Y
o
=Y
p
=
\(Y_o=Y_0+\ \dots\ +Y_{n-1}\)
Y
rp
=Y
s
=
\(Y_{rp}=\dfrac{1}{\dfrac{1}{Y_0}+\ \dots\ +\dfrac{1}{Y_{n-1}}}\)
Y
h
=
\(Y_h=\dfrac{n}{\dfrac{1}{Y_0}+\ \dots\ +\dfrac{1}{Y_{n-1}}}\)
Y
m
=
\(Y_m=\sqrt[n]{Y_0\cdot\ \dots\ \cdot Y_{n-1}}\)
Y
sz
=
\(Y_{sz}=\dfrac{Y_0+\ \dots\ +Y_{n-1}}{n}\)
Y
n
=
\(Y_n=\sqrt{\dfrac{{Y_0}^2+\ \dots\ +{Y_{n-1}}^2}{n}}\)
Z
p
=
\(Z_p=\dfrac{1}{Y_p}\)
Z
s
=
\(Z_s=\dfrac{1}{Y_s}\)
⌂ Index
☺
Verzió: 2025-03-25 (
2011-07-11
..
2025-03-10 18:00:01
UTC )
gg630504