Váltakozó áramú vezetés, ellenállás

Y←Z
Z = ←Y
Y =
\(Y=\dfrac{1}{Z}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
Z←Y
Y = ←Z
Z =
\(Z=\dfrac{1}{Y}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
Y,Z←Z0..Z4
Z0 =
Z1 =
Z2 =
Z3 =
Z4 =
Zo = Zs =

\(Z_o=Z_0+\ \dots\ +Z_{n-1}\)
Zrp = Zp =

\(Z_{rp}=\dfrac{1}{\dfrac{1}{Z_0}+\ \dots\ +\dfrac{1}{Z_{n-1}}}\)
Zh =
\(Z_h=\dfrac{n}{\dfrac{1}{Z_0}+\ \dots\ +\dfrac{1}{Z_{n-1}}}\)
Zm =
\(Z_m=\sqrt[n]{Z_0\cdot\ \dots\ \cdot Z_{n-1}}\)
Zsz =
\(Z_{sz}=\dfrac{Z_0+\ \dots\ +Z_{n-1}}{n}\)
Zn =
\(Z_n=\sqrt{\dfrac{{Z_0}^2+\ \dots\ +{Z_{n-1}}^2}{n}}\)
Ys =
\(Y_s=\dfrac{1}{Z_s}\)
Yp =
\(Y_p=\dfrac{1}{Z_p}\)
Y,Z←Y0..Y4
Y0 =
Y1 =
Y2 =
Y3 =
Y4 =
Yo =Yp =

\(Y_o=Y_0+\ \dots\ +Y_{n-1}\)
Yrp =Ys =

\(Y_{rp}=\dfrac{1}{\dfrac{1}{Y_0}+\ \dots\ +\dfrac{1}{Y_{n-1}}}\)
Yh =
\(Y_h=\dfrac{n}{\dfrac{1}{Y_0}+\ \dots\ +\dfrac{1}{Y_{n-1}}}\)
Ym =
\(Y_m=\sqrt[n]{Y_0\cdot\ \dots\ \cdot Y_{n-1}}\)
Ysz =
\(Y_{sz}=\dfrac{Y_0+\ \dots\ +Y_{n-1}}{n}\)
Yn =
\(Y_n=\sqrt{\dfrac{{Y_0}^2+\ \dots\ +{Y_{n-1}}^2}{n}}\)
Zp =
\(Z_p=\dfrac{1}{Y_p}\)
Zs =
\(Z_s=\dfrac{1}{Y_s}\)

⌂ Index

Verzió: 2024-10-01 ( 2011-07-11 .. 2024-05-18 11:17:06 UTC )