Időállandó (C,L,R)

C,L←R,τ
R = ←L,τ ←C,τ ←C,L
= ←L,R ←C,R ←C,L
C =
\(C=\dfrac{\tau}{R}\)
L =
\(L=R\cdot\tau\)
C,R←L,τ
L = ←R,τ ←C,τ ←C,R
= ←L,R ←C,R ←C,L
C =
\(C=\dfrac{\tau^2}{L}\)
R =
\(R=\dfrac{L}{\tau}\)
C,τ←L,R
L = ←R,τ ←C,τ ←C,R
R = ←L,τ ←C,τ ←C,L
C =
\(C=\dfrac{L}{R^2}\)
=
\(\tau=\dfrac{L}{R}\)
L,R←C,τ
C = ←L,τ ←L,τ ←L,R
= ←L,R ←C,R ←C,L
L =
\(L=\dfrac{r^2}{C}\)
R =
\(R=\dfrac{\tau}{C}\)
L,τ←C,R
C = ←R,τ ←L,τ ←L,R
R = ←L,τ ←C,τ ←C,L
L =
\(L=C\cdot R^2\)
=
\(\tau=C\cdot R\)
R,τ←C,L
C = ←R,τ ←L,τ ←L,R
L = ←R,τ ←C,τ ←C,R
R =
\(R=\sqrt{\dfrac{L}{C}}\)
=
\(\tau=\sqrt{C\cdot L}\)




C←R,t,Ub,UC
R = ←C,t,U,U
t = ←C,R,U,U
Ub =
UC = ←C,R.t,U
C↑ =
\(C_\uparrow=-\dfrac{t}{R\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
C↓ =
\(C_\downarrow=-\dfrac{t}{R\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
R←C,t,Ub,UC
C = ←R,t,U,U
t = ←C,R,U,U
Ub =
UC = ←C,R,t,U
R↑ =
\(R_\uparrow=-\dfrac{t}{C\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
R↓ =
\(R_\downarrow=-\dfrac{t}{C\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
t←C,R,Ub,UC
C = ←R,t,U,U
R = ←C,t,U,U
Ub =
UC = ←C,R,t,U
t↑ =
\(t_\uparrow=-C\cdot R\cdot \ln\left(1-\dfrac{U_C}{U_b}\right)\)
t↓ =
\(t_\downarrow=-C\cdot R\cdot\ln\left(\dfrac{U_C}{U_b}\right)\)
UC←C,R,t,Ub
C = ←R,t,U,U
R = ←C,t,U,U
t = ←C,R,U,U
Ub =
U↑ =
\(U_{C\uparrow}=U_b\cdot\left(1-e^{-\dfrac{t}{R\cdot C}}\right)\)
U↓ =
\(U_{C\downarrow}=U_b\cdot e^{-\dfrac{t}{R\cdot C}}\)
|I| =
\(|I|=\dfrac{U_b\cdot e^{-\dfrac{t}{R\cdot C}}}{R}\)

⌂ Index

Verzió: 2024-10-01 ( 2011-06-23 .. 2024-05-18 10:14:38 UTC )