▲ A program működéséhez szükséges, hogy a böngésződ futtasson JavaScript-et. Böngésződ most
nem
futtat JavaScript-et.
Időállandó (C,L,R)
C,L←R,τ
R =
←L,τ
←C,τ
←C,L
=
←L,R
←C,R
←C,L
☺
C =
\(C=\dfrac{\tau}{R}\)
L =
\(L=R\cdot\tau\)
C,R←L,τ
L =
←R,τ
←C,τ
←C,R
=
←L,R
←C,R
←C,L
☺
C =
\(C=\dfrac{\tau^2}{L}\)
R =
\(R=\dfrac{L}{\tau}\)
C,τ←L,R
L =
←R,τ
←C,τ
←C,R
R =
←L,τ
←C,τ
←C,L
☺
☺
C =
\(C=\dfrac{L}{R^2}\)
=
\(\tau=\dfrac{L}{R}\)
L,R←C,τ
C =
←L,τ
←L,τ
←L,R
=
←L,R
←C,R
←C,L
☺
L =
\(L=\dfrac{r^2}{C}\)
R =
\(R=\dfrac{\tau}{C}\)
L,τ←C,R
C =
←R,τ
←L,τ
←L,R
R =
←L,τ
←C,τ
←C,L
☺
☺
L =
\(L=C\cdot R^2\)
=
\(\tau=C\cdot R\)
R,τ←C,L
C =
←R,τ
←L,τ
←L,R
L =
←R,τ
←C,τ
←C,R
☺
☺
R =
\(R=\sqrt{\dfrac{L}{C}}\)
=
\(\tau=\sqrt{C\cdot L}\)
C←R,t,U
b
,U
C
R =
←C,t,U,U
t =
←C,R,U,U
U
b
=
U
C
=
←C,R.t,U
☺
C↑ =
\(C_\uparrow=-\dfrac{t}{R\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
C↓ =
\(C_\downarrow=-\dfrac{t}{R\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
R←C,t,U
b
,U
C
C =
←R,t,U,U
t =
←C,R,U,U
U
b
=
U
C
=
←C,R,t,U
☺
R↑ =
\(R_\uparrow=-\dfrac{t}{C\cdot\ln\left(1-\dfrac{U_C}{U_b}\right)}\)
R↓ =
\(R_\downarrow=-\dfrac{t}{C\cdot\ln\left(\dfrac{U_C}{U_b}\right)}\)
t←C,R,U
b
,U
C
C =
←R,t,U,U
R =
←C,t,U,U
U
b
=
U
C
=
←C,R,t,U
☺
☺
t↑ =
\(t_\uparrow=-C\cdot R\cdot \ln\left(1-\dfrac{U_C}{U_b}\right)\)
t↓ =
\(t_\downarrow=-C\cdot R\cdot\ln\left(\dfrac{U_C}{U_b}\right)\)
U
C
←C,R,t,U
b
C =
←R,t,U,U
R =
←C,t,U,U
t =
←C,R,U,U
U
b
=
☺
U↑ =
\(U_{C\uparrow}=U_b\cdot\left(1-e^{-\dfrac{t}{R\cdot C}}\right)\)
U↓ =
\(U_{C\downarrow}=U_b\cdot e^{-\dfrac{t}{R\cdot C}}\)
|I| =
\(|I|=\dfrac{U_b\cdot e^{-\dfrac{t}{R\cdot C}}}{R}\)
⌂ Index
☺
Verzió: 2024-10-01 (
2011-06-23
..
2024-05-18 10:14:38
UTC )