μr = 
dh = \(l_a/(N+0,5)=l_k/(N+1)\)
Ah =
=

=

la = \(d_h\cdot(N+0,5)\)
=
N = ←d,L
L0 = \(L_0=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,7593\cdot l_a+0,50266\cdot d_a}\)
L1 = \(L_1=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,2566\cdot l_a+0,56549\cdot d_a}\)
L2 = \(L_2=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,2767\cdot l_a+0,57454\cdot d_a}\)
L3 = \(L_3=\mu_r\cdot\mu_0\cdot k\cdot d_a\cdot N^2\)
\(0,01\le\dfrac{d_a}{l_a}\le 1\rightarrow k=0,6398\cdot\left(\dfrac{d_a}{l_a}\right)^{0,912}\)
\(1\lt\dfrac{d_a}{l_a}\le 100\rightarrow k=0,6517+0,5443\cdot\ln\left(\dfrac{d_a}{l_a}\right)\)

dh =
da =
db =
la =
lk =
lh =
\(l_h=\sqrt{(N\cdot\pi\cdot d_a)^2+l_a^2}\)
\(L_0=\dfrac{d_a\cdot N^2}{0,14\cdot\dfrac{l_a}{d_a}+0,04}\) [da] = [l] = cm;
[L0] = cm
Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).
\(L_1=\dfrac{d_a^2\cdot N^2}{100\cdot l_a+45\cdot d_a}\) [da] = [l] = cm;
[L1] = μH
Rádióamatőrök kézikönyve 1978. 1.28.  
\(L_2=\dfrac{r_a^2\cdot N^2}{10\cdot l_a+9\cdot r_a}\) [da] = [l] = inch;
[L2] = μH
Wheeler képlet
\(L_3=k\cdot d_a\cdot N^2\)
\(0,01\le\dfrac{d_a}{l_a}\le 1\rightarrow k=8,04\cdot 10^{-3}\cdot\left(\dfrac{d_a}{l_a}\right)^{0,912}\)
\(1\lt\dfrac{d_a}{l_a}\le 100\rightarrow k=8,19\cdot 10^{-3}+6,84\cdot 10^{-3}\cdot\ln\left(\dfrac{d_a}{l_a}\right)\)
[da] = [l] = cm;
[L3] = μH
HE 1993-03-101.
μ₀→
⌂ Index

Verzió: 2024-08-22 ( 2010-11-13 .. 2024-05-19 18:07:59 UTC )