Induktivitások (L)

Ls←L0,L1,M
L0 =
L1 =
M =
Ls =
\(L_s=L_0+L_1+2\cdot M\)
Lp←L0,L1,M
L0 =
L1 =
M =
Lp =
\(L_p=\dfrac{L_0\cdot L_1+M^2}{L_0+L_1-2\cdot M}\)




D,Q,Rp←f,L,Rs
L =
f =
Rs =
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{R_s}{2\cdot\pi\cdot f\cdot L}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{2\cdot\pi\cdot f\cdot L}{R_s}\)
Rp =
\(R_p=\dfrac{\left(2\cdot\pi\cdot f\cdot L\right)^2}{R_s}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)
D,Q,Rs←f,L,Rs
L =
f =
Rp =
D=tan(δ) =
\(D=\tan(\delta)=\dfrac{2\cdot\pi\cdot f\cdot L}{R_p}\)
δ =
\(\delta=\arctan(D)\)
Q =
\(Q=\dfrac{1}{D}=\dfrac{R_p}{2\cdot\pi\cdot f\cdot L}\)
Rs =
\(R_s=\dfrac{\left(2\cdot\pi\cdot f\cdot L\right)^2}{R_p}\)
cos φ =
\(\cos\varphi=\dfrac{R}{|Z|}\)




L←f,X|Z
f = ←L,XL|Z
XL = ←f,L
Z = *i ←f,L
L =
f←L,X|Z
L = ←f,Z
XL = ←f,L
Z = *i ←f,L
f =
X,Y,Z←f,L
f = ←L,Z
L = ←f,XL|Z
Y =
\(Y=-\dfrac{1}{2\cdot\pi\cdot f\cdot L}\cdot\mathrm{i}\)
XL =
\(X_L=2\cdot\pi\cdot f\cdot L\)
Z =
\(Z=2\cdot\pi\cdot f\cdot L\cdot\mathrm{i}\)




E,I←L,Ψ
L = ←I,Ψ ←E,Ψ ←E,I
Ψ = ←I,L ←E,L ←E,I
E =
\(E=\dfrac{\Psi^2}{2\cdot L}\)
I =
\(I=\dfrac{\Psi}{L}\)
E,L←I,Ψ
I = ←L,Ψ ←E,Ψ ←E,L
Ψ = ←I,L ←E,L ←E,I
E =
\(E=\dfrac{I\cdot\Psi}{2}\)
L =
\(L=\dfrac{\Psi}{I}\)
E,Ψ←I,L
I = ←L,Ψ ←E,Ψ ←E,L
L = ←I,Ψ ←E,Ψ ←E,I
E =
\(E=\dfrac{I^2\cdot L}{2}\)
Ψ =
\(\Psi=I\cdot L\)
I,L←E,Ψ
E = ←L,Ψ ←I,Ψ ←I,L
Ψ = ←I,L ←E,L ←E,I
I =
\(I=\dfrac{2\cdot E}{\Psi}\)
L =
\(L=\dfrac{\Psi^2}{2\cdot E}\)
I,Ψ←E,L
E = ←L,Ψ ←I,Ψ ←I,L
L = ←I,Ψ ←E,Ψ ←E,I
I =
\(I=\sqrt{\dfrac{2\cdot E}{L}}\)
Ψ =
\(\Psi=\sqrt{2\cdot E\cdot L}\)
L,Ψ←E,I
E = ←L,Ψ ←I,Ψ ←I,L
I = ←L,Ψ ←E,Ψ ←E,L
L =
\(L=\dfrac{2\cdot E}{I^2}\)
Ψ =
\(\Psi=\dfrac{2\cdot E}{I}\)




N←AL,L
AL = H ←L,N
L = ←AL,N
N =
\(N=\sqrt{\dfrac{L}{A_L}}\)
L←AL,N
AL = H ←L,N
N = ←AL,L
L =
\(L=A_L\cdot N^2\)
AL←L,N
L = ← AL,N
N = ← AL,L
AL =
\(A_L=\dfrac{L}{N^2}\)




L←μr,a
μr = 
Ah =
=
a = ←L
L =
\(L=\dfrac{1}{2\cdot\pi}\cdot\mu_r\cdot\mu_0\cdot a\cdot\left(\ln\left(\dfrac{4\cdot a}{d_h}\right)-0,75\right)\)
a←μr,L
μr =
Ah =
=
L = ←a
\(L=\dfrac{1}{2\cdot\pi}\cdot\mu_r\cdot\mu_0\cdot a\cdot\left(\ln\left(\dfrac{4\cdot a}{d_h}\right)-0,75\right)\)
a =




a←μr,L,N
μr =
Ah =
=
L = ←a,N
N = ←a,L
\(L=\dfrac{3}{2\cdot\pi}\cdot\mu_r\cdot\mu_0\cdot a_a\cdot N^2\cdot\left(\ln\left(\dfrac{2\cdot a}{d_h}\right)-1,405\right)\)
aa =
ab =
\(a_b=a_a-\sqrt{3}\cdot d_h\)
lh =
\(l_h=N\cdot 3\cdot a_a\)
L←μr,a,N
μr = 
Ah =
=
=
N = ←a,L
L =
\(L=\dfrac{3}{2\cdot\pi}\cdot\mu_r\cdot\mu_0\cdot a_a\cdot N^2\cdot\left(\ln\left(\dfrac{2\cdot a_a}{d_h}\right)-1,405\right)\)
lh =
\(l_h=N\cdot 3\cdot a_a\)
N←μr,a,L
μr = 
Ah =
=
=
L = ←d,N
N =
\(N=\sqrt{\dfrac{2\cdot\pi\cdot L}{3\cdot\mu_r\cdot\mu_0\cdot a_a\cdot\left(\ln\left(\dfrac{2\cdot a_a}{d_h} \right)-1,405\right)}}\)
lh =
\(l_h=N\cdot 3\cdot a_a\)




a←μr,L,N
μr =
Ah =
=
L = ←a,N
N = ←a,L
\(L=\dfrac{2}{\pi}\cdot \mu_r\cdot \mu_0\cdot a_a\cdot N^2\cdot\left(\ln\left(\dfrac{2\cdot a_a}{d_h}\right)-0,774\right)\)
aa =
ab =
\(a_b=a_a-d_h\)
lh =
\(l_h=N\cdot 4\cdot a_a\)
L←μr,a,N
μr = 
Ah =
=
=
N = ←a,L
L =
\(L=\dfrac{2}{\pi}\cdot\mu_r\cdot\mu_0\cdot a_a\cdot\ N^2\cdot\left(\ln\left(\dfrac{2\cdot a_a}{d_h}\right)-0,774\right)\)
lh =
\(l_h=N\cdot 4\cdot a_a\)
N←μr,a,L
μr = 
Ah =
=
=
L = ←a,N
N =
\(N=\sqrt{\dfrac{\pi\cdot L}{2\cdot\mu_r\cdot\mu_0\cdot a_a\cdot\left(\ln\left(\dfrac{2\cdot a_a}{d_h}\right)-0,774\right)}}\)
lh =
\(l_h=N\cdot 4\cdot a_a\)




d←μr,L,N
μr =
Ah =
=
L = ←d,N
N = ←d,L
\(L=\dfrac{1}{2}\cdot\mu_r\cdot\mu_0\cdot d_a\cdot N^2\cdot\left(\ln\left(\dfrac{8\cdot d_a}{d_h}\right)-2\right)\)
da =
db =
\(d_b=d_a-d_h\)
lh =
\(l_h=N\cdot \pi\cdot d_a\)
L←μr,d,N
μr = 
Ah =
=
=
N = ←d,L
L =
\(L=\dfrac{1}{2}\cdot\mu_r\cdot\mu_0\cdot d_a\cdot N^2\cdot\left(\ln\left(\dfrac{8\cdot d_a}{d_h}\right)-2\right)\)
lh =
\(l_h=N\cdot\pi\cdot d_a\)
N←μr,d,L
μr = 
Ah =
=
=
L = ←d,N
N =
\(N=\sqrt{\dfrac{2\cdot L}{\mu_r\cdot\mu_0\cdot d_a\cdot\left(\ln\left(\dfrac{8\cdot d_a}{d_h}\right)-2\right)}}\)
lh =
\(l_h=N\cdot\pi\cdot d_a\)




L←μr,d,l,N
μr = 
dh = \(l_a/(N+0,5)=l_k/(N+1)\)
Ah =
=

=

la = \(d_h\cdot(N+0,5)\)
=
N = ←d,L
L0 = \(L_0=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,7593\cdot l_a+0,50266\cdot d_a}\)
L1 = \(L_1=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,2566\cdot l_a+0,56549\cdot d_a}\)
L2 = \(L_2=\dfrac{\mu_r\cdot\mu_0\cdot d_a^2\cdot N^2}{1,2767\cdot l_a+0,57454\cdot d_a}\)
L3 = \(L_3=\mu_r\cdot\mu_0\cdot k\cdot d_a\cdot N^2\)
\(0,01\le\dfrac{d_a}{l_a}\le 1\rightarrow k=0,6398\cdot\left(\dfrac{d_a}{l_a}\right)^{0,912}\)
\(1\lt\dfrac{d_a}{l_a}\le 100\rightarrow k=0,6517+0,5443\cdot\ln\left(\dfrac{d_a}{l_a}\right)\)

dh =
da =
db =
la =
lk =
lh =
\(l_h=\sqrt{(N\cdot\pi\cdot d_a)^2+l_a^2}\)
N←μr,d,l,L
μr = 
dh = \(l_a/(N+0,5)=l_k/(N+1)\)
Ah =
=

=

la = \(d_h\cdot(N+0,5)\)
=
L = ←d,L
da[0..4] =

N0 =
\(L_0=\dfrac{\mu_r\cdot\mu_0\cdot {d_a}^2\cdot N^2}{1,7593\cdot l_a+0,50266\cdot d_a}\)
dh0 <=
da0 =
db0 =
la0 =
lk0 =
lh0 =
\(l_h=\sqrt{\left(N\cdot\pi\cdot d_a\right)^2+{l_a}^2}\)

N1 =
\(L_1=\dfrac{\mu_r\cdot\mu_0\cdot {d_a}^2\cdot N^2}{1,2566\cdot l_a+0,56549\cdot d_a}\)
dh1 <=
da1 =
db1 =
la1 =
lk1 =
lh1 =

N2 =
\(L_2=\dfrac{\mu_r\cdot\mu_0\cdot {d_a}^2\cdot N^2}{1,2767\cdot l_a+0,57454\cdot d_a}\)
dh2 <=
da0 =
db2 =
la2 =
lk2 =
lh2 =

N3 =
\(L_3=\mu_r\cdot\mu_0\cdot k\cdot d_a\cdot N^2\)
\(0,01\le\dfrac{d_a}{l_a}\le 1\rightarrow k=0,6398\cdot\left(\dfrac{d_a}{l_a}\right)^{0,912}\)
\(1\lt\dfrac{d_a}{l_a}\le 100\rightarrow k=0,6517+0,5443\cdot\ln\left(\dfrac{d_a}{l_a}\right)\)
dh3 <=
da3 =
db3 =
la3 =
lk3 =
lh3 =
\(L_0=\dfrac{d_a\cdot N^2}{0,14\cdot\dfrac{l_a}{d_a}+0,04}\) [da] = [l] = cm;
[L0] = cm
Molnár, Jovitza: Rádiósok könyve, 85. oldal ( reprint 1994. ).
\(L_1=\dfrac{d_a^2\cdot N^2}{100\cdot l_a+45\cdot d_a}\) [da] = [l] = cm;
[L1] = μH
Rádióamatőrök kézikönyve 1978. 1.28.  
\(L_2=\dfrac{r_a^2\cdot N^2}{10\cdot l_a+9\cdot r_a}\) [da] = [l] = inch;
[L2] = μH
Wheeler képlet
\(L_3=k\cdot d_a\cdot N^2\)
\(0,01\le\dfrac{d_a}{l_a}\le 1\rightarrow k=8,04\cdot 10^{-3}\cdot\left(\dfrac{d_a}{l_a}\right)^{0,912}\)
\(1\lt\dfrac{d_a}{l_a}\le 100\rightarrow k=8,19\cdot 10^{-3}+6,84\cdot 10^{-3}\cdot\ln\left(\dfrac{d_a}{l_a}\right)\)
[da] = [l] = cm;
[L3] = μH
HE 1993-03-101.
μ₀→
⌂ Index

Verzió: 2024-10-01 ( 2010-06-24 .. 2024-05-19 18:09:15 UTC )